
Dynamical screening of excitons in a semiconductor electron-hole plasma

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 9335

(http://iopscience.iop.org/0953-8984/6/44/014)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 20:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 6 (1994) 9335-9348. Printed in the UK 

Dynamical screening of excitons in a semiconductor 
electron-hole plasma 

D Ninno, F Liguori, V Cataudella and G Iadonisi 
Dipdmento di Scianze Fisiche, Uniwniia di Napoli, Mostra D'Oltremare Padiment 19, I- 
80125 Naples, Italy 

Received 27 April 994 

Abstract A singleparticle Hamiltonian appmach is used for describing dynamical screening 
of excitons in optically excited semiconductors. Upon considering a particular elecwon-hole 
pair, the excitation spectrum of all the other electrons and holes is replaced by a single plasmon 
mode o(q). Fmm a Fr(iNiclbtype Hamilbnian, Is exciton binding energy and wavekinunctions 
are calculated variationally with a generalizakion of the Lee-Low-Fines transformation. The 
advantage of the method, beside the simplicity, is that bandgap mormalimion is accounted for 
within the same Hamiltonian so that a consistent comparison with experimental data is &sible. 
In particular, our model reproduces both the remarkable persistence of the Is GaAs exciton 
line under stmng optical excitation and Ihe measured transition density from bound to unbound 
StateS. 

1. Introduction 

There has been continuous interest in the non-linear optical properties of highly excited 
semiconductors, either bulk or quantum wells, particularly for potential application in the 
design of optoelectronic devices [1,53]. From a theoretical point of view, even more 
interesting is the ionization of excitons. that is, the disappearance of the exciton line due 
to screening and phase space occupation [e]. An intriguing feature observed in the 
optical spectra of optically excited hulk GaAs is the constancy of the exciton line over 
a wide range of free carrier densities. It has been recognized that this feature is due to a 
compensation between the variation of the exciton binding energy due to the screening action 
of photogenerated free carriers (electrons and holes) and the band-gap renormalization. A 
further increase in free-carrier density leads to the ionization of the exciton and therefore 
to strong non-linearities in the absorption spectra and refractive index [1,5,9, IO]. 

A theory addressing the problem of exciton in highly excited semiconductors cannot 
ignore bandgap renormalization effects. It is indeed necessary to treat the dynamical 
screening of excitons and bandgap renormalizations within the same theoretical scheme, 
that is, at the same level of approximation. Several many-body approaches [Z, 4,7,81 and 
simplified models 1111 have been proposed based on the calculation of the complex optical 
dielectric function from the numerical solution of the Bethdalpeter equation in k space. 
The knowledge of such a dielectric function leads directly to the absorption spectra and 
refractive index. 

With this paper we wish to present a study of the dynamical screening of exciton using 
an Hamiltonian approach which has the advantage to yield closed and easily evaluable 
variational expression for the 1s exciton ground state energy and wavefunction. In particular, 
the model we propose comprises a single electron-hole pair which, besides the direct 
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Coulomb potential, interacts with plasma excitations. By singling out of an electron-hole 
gas two particles, we attempt to reduce the many particle problem to a two particles one 
where the action of the electron-hole gas is taken into account in terms of plasmon dressing 
between and around the singled out particles. In doing this we are dealing with a sort of 
mean-field approximation in which the long range part of the electron-electron interaction is 
correctly represented [12]. We shall see that assuming a particle-gas interaction of Frohlich 
type, a variational procedure, widely used in the context of polaron and bipolaron theory 
[13-16], is able to give both the pair self-energy and the exciton 1s binding energy. 

There is one variational parameter y in the problem to which the exciton average radius 
depends ((r) N y-l). The exciton total energy as a function of this parameter has either 
one or two minima depending on the free carriers density n. In GaAs at zero temperature 
and for n > 2.43 x lOI5  (rs < 4.0 where r, = (3/4nnu3 with a0 the effective Bohr radius) 
the exciton total energy has just one minimum at y = 0.0 which corresponds to (r)  + 00. 
In this case the exciton total energy and the free particles self-energy are the same thing 
and accounts for the gap renormalization. For n < 2.43 x 1015 (rs > 4.0) the exciton total 
energy has two minima one of which at y = 0.0 and the other at finite y with the latter 
lower than the former. In this situation an electron-hole pair is unstable against the exciton 
bound state formation. A complete study of the exciton dimensions, oscillator strengths and 
polarization clouds is presented to clarify all the aspects of the problem. 

Our variational scheme allows the determination of an effective electron-hole potential 
which includes dynamical screening effects. We have studied a number of properties related 
to this potential going from a static approximation [I l ,  I71 where all the recoil effects due to 
plasmon emission and reabsorption are neglected to a dynamical description where recoil is 
fully accounted for. One of the properties that we can anticipate is its long range behaviour. 

Depending on the actual value of the variational parameter y one can either have or not 
have a screened Coulombic tail. We shall see that this result has a purely dynamical origin 
and is related to the way the electron-hole gas responds to the exciton. 

2. Hamiltonian 

In a direct semiconductor with a population of electrons and holes sustained by a laser 
beam, we assume that these particles are in quasi-equilibrium, that is, the pair excitation 
lifetimes are long compared with the relevant inter-particle scattering times. It is therefore 
reasonable to assume the Fermi-Dirac expression for the equilibrium distribution. At zero 
temperature the electron-hole gas is characterized by a plasma frequency 

and the screening wavevector 

where kF is the Fermi momentum, me and mh the electron and hole band masses and 
ne = nh = n the electron and hole densities. 

For the plasma dispersion o(q) a possible choice is [18] 
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where for c(q) we can either use the Thomas-Eemi expression 

or the Lindbard expression 

Following Overhauser 1181, let us consider the Hamiltonian describing a particle 
interacting with a boson field 

where C q )  and w(q) are the particlsboson coupling and the boson frequency dispersion 
respectively. Indicating with p ( ~ )  the electron-bole gas charge density fluctuation, the 
interaction energy with an electron is 

where T, is the electron position, p(q) the Fourier transform of P(T) ,  U the normalization 
volume and €0 the background static dielectric constant. By direct comparison between (6) 
and (7) we can define the charge density operator 

The f-sum for an electron-hole gas [12] reads 

where fiwn0 are the energy difference between the exact excited In) and ground 10) states 
and N is the total number of particles contained in the volume U. Since we are thinking to 
a plasmon model where, for a given q. there is just one mode w(q), from (8) and (9) we 
have 

with n = N / u  the equilibrium density. 

plasmon coupling coefficient reads 
The above derivation can be repeated for the case of a hole so that the electron(ho1e)- 

We are now ready to write the complete Hamiltonian of a electron-hole pair interacting 
each other through the Coulomb potential and each with the electron-hole gas 

q i=c.h 
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Figm 1. Pair self-enm-gy as a funcdon of hee 
elecnon-hole density for GaAs. The full l i e  is 
dculated from equation (14), the dot-dashed line from 
[U] and the dashed line from [XI. The energy is in 
unis of effective Rydbergs. 

3. Free electron-hole pair interacting with a plasmon mode 

Before starting our analysis of the exciton ground state from Hamiltonian (12) it is interesting 
to look at some results conceming the case of a free pair embedded in the electron-hole 
gas. One of the problems one has to face in dealing with highly excited semiconductors 
is the gap renormalization, that is, the energy a particle gains because of the interaction 
with all the other particles. Traditionally, this self-energies are calculated splitting the 
contribution to the single partide self-energies into a screened-exchange term, calculated 
with the screened Coulomb potential, and a Coulomb-hole term which accounts for the 
charge density fluctuations around the test charge [7,8, 181. From the point of view of OUT 
Hamiltonian formulation, the exchange correlation is, at this stage, neglected whereas the 
Coulomb-hole is fully accounted for. The pair self-energy can easily be calculated from 
Hamiltonian (12) dropping the direct electron4ole Coulomb interaction 

Figure 2 Modulus of the induced charge densily p as 
a function of r (units of the effective Bohr radius). The 
full line refen to ule electron and Ihe dashed line to the 
hole. Material parameters are those of GaAs. 

Since this Hamiltonian is formally identical to the one of the polaron problem, we may use 
the Lee-Low-Pines variational scheme [19,20] and get 

In figure 1, we present a comparison between the gap-renormalization numerically calculated 
from equation (14) and from both the universal formula of Vashishta and Kalia [21] and 
Zmermann  [23] for the case of G A S .  These formulae provide a good interpolation 
of experimental results [22]. In making this comparison we have used equation (3) for 
the plasma dispersion, the Lindhard expression (5) for e(q) and the following material 
parameters 1241: me = 0.067, mh = 0.62, €0 = 13.18. Considering that there are no 
adjustable parameters in the density range considered, the agreement is satisfactory. 
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A point of interest for a deeper physical understanding of the problem is the calculation 
of the induced charge density fluctuation. From (8) and (10) the charge density operator for 
an electron embedded in a electron-hole gas is 

The expectation value of this operator on the Lee-Low-Pines [19,20] variational ground 
state wavefunction leads to 

where, having taken the average with respect to the plasmon variables only, the induced 
charge depends on the position of re of the inducing electron. A feeling on the general 
properties of p ( r )  can be gained by solving the above integral taking equation (4) for the 
plasmon dispersion and neglecting the kinetic term fi2q2/2m,, that is, assuming the inducing 
electron at rest, for instance at re = 0. We have 

This simple result indicates that the induced charge density is exponentially decaying with 
r and proportional to the square of the Thomas-Fermi wavevector Qp. The total induced 
charge is 

p(r)dr3 = e .  (18) s 
From the Poisson equation 

it is immediately apparent that the electrostatic potential is 

The potential energy V ( r )  for the presence of an hole is therefore 

where the first term is the self-energy (14) (gap renormalization) of a charge at rest. By 
adding to equation (21) the attractive Coulomb potential energy relative to an electron-hole 
pair -e2/cor we get 
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that is, exactly the potential which comes from static screening theory [17]. It is worth 
stressing the way in which the static screening results from our theory. Apart of the 
Thomas-Fermi approximation which is not crucial for what we are going to state, the static 
screening is a direct result of neglecting the kinetic term h2q2/2me with respect to wp. kt 
other words, the plasma responds so swiftly to the electron that it sees its instantaneous 
positions. The above arguments can be repeated as they are to the case where the inducing 
particle is a hole. 

In figure 2, the modulus of the electron (hole) induced particle densities are shown as 
calculated from (16) including both the kinetic tem and the Lindhard expression for the 
dielectric function. There are two interesting features. First, the total induced charge is 
still &e indicating that the electron-hole interaction is again short range (the total charge 
is zero). Second, apart from the oscillations typical of the Lindhard dielectric function, the 
induced charge density has a different behaviour for the electron and the hole due to the 
different band mass and ultimately to a different dynamics. 

4. Exciton ground state and effective potential 

In this section we are going to describe a variational procedure for the Hamiltonian of 
equation (12). The first step is the reduction to the centx of mass and relative coordinates 
for the electron-hole pair 

with 

The transformed Hamiltonian reads 

H = - + - - - + C R o ( q )  Pz p z  e2 
2M 2 p  cor 

+ C c ( ~ ) ( ~ ~ ( T ) u ~ & * ~  + q;(r)aie-i*R) 
9 

where C(q) is defined in (lo), o(q) is given in equation (3) and 

qr r (~)  = exp(is2q. T) - exp(-islq. T ) .  

Since the total linear momentum of the system 

'p = P + cfiqa:+ 
P 

commutes with the above Hamiltoni&, the operator 

U(R, Q) = exp i Q - ~ q o $ z , )  . R] [ (  4 
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clears the Hamiltonian from the centre of mass coordinate R. It is in fact easy to show that 

+ C(d(a&)as + a;(T)a;) (29) 
4 

where h Q  is the eigenvalue of P .  Our aim is the variational calculation of the total ground 
state energy. The trial ground state wavefunction is chosen to be 

Iq) = uF(T)lo)'$(r) (30) 

where 

is a generalization of the Lee-Low-Pines transformation with an explicit dependence on 
the relative coordinate r and 

is the exciton envelope 1s wavefunction with y as a variational parameter. The plasmon 
distribution functions fq(r) are calculated from the minimum condition 

which produces the Eulerian partial differential equation 

whose solution has been already widely discussed 113-161. An excellent approximation to 
&(T) is given by 

where 

e =  4y +- hw(q)+-  [ :( 2M 
The ground state energy on the trial wavefunction (30) with Q = 0 is 
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where we have defined an effective potential 

which, when averaged on the envelope (32) gives rise to the exciton total energy 

where 

It is worth discussing in some detail equation (38). The first term is just the direct electron- 
hole Coulomb potential. Inside the integral we can distinguish two types of term: those with 
an explicit dependence on r and those that are constant. In both cases there is an explicit 
dependence on the exciton envelope wavefunction (32) through the parameter y. The terms 
not dependent on r can be defined as self-energy terms with an explicit dependence on y. 
However, the pair self-energy E,K given in equation (14) can be obtained from either (38) 
or (39) setting y = 0. Since the l i t  y = 0 means that the electron-hole pair are at infinite 
relative distance, we can state 

E d  = E(Y)y=o- (41) 

The fact that the self-energy is obtained within the same Hamiltonian and approximations as 
that of the exciton is an important feature of our approach which, as we shall see, facilitates 
comparison with experimental data. The calculation of the integral in equation (38) can 
be done analytically only under the same restrictions discussed in the case of the induced 
charge density of section 3. Ihus, neglecting the kinetic termsfizq2/2mi, taking equation (4) 
for the plasmon dispersion and setting y = 0 we obtain equation (22) for the effective 
potential. It is interesting to note that equation (22) has resulted from (21) because of an 
exact cancellation of the direct Coulomb interaction. This is still true, but only for y = 0, 
that is, when the particles are at great distance from each other. For y # 0 equation (38) is 
unable to produce a Coulombic potential exactly cancelling the d m t  Coulomb interaction 
(first term of equation (38)). The consequence of this is that the effective potential of 
equation (38) has a screened Coulombic tail for y # 0. More precisely, it is possible to 
show from (38) that, apart from constant terms, 
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Figurr 3. The effective potential as defined in Figure4. GaAsexcilonenergyandself-energyreferred 
equation (38) as a function of r for n = 1.24 x loL5 to the gap at n = 0.0. The dos are experimental points 
(r, = 5.0) and for three diffmnt values of y .  (a) taken f" [261. The dotdashed, the dashed and the 
Coulomb potemid, (b) y = 1.0, (c) y = 0.5, (d) full lime mrresponds to different approximations (see 
y = 0.0. Material parameters are those of GaAs. text). 

Eiquation (43) shows the relative importance played by y and Rw, in determining the 
screened Coulombic tail. 

In figure 3 we present a plot of the effective potential numerically calculated from 
equation (38) with a free particle density of n = 1.24 x (rs = 5.0) and for three 
different values of y .  Curve (a) is the bare direct Coulomb interaction whereas (b), (c) and 
(d) correspond to y = 1.0,0.5,0.0 respectively. It is immediately seen that for y # 0 there 
is a screened coulombic tail. 

5. Paoli blocking 

As soon as an electron-hole gas is generated by optical pumping a Fermi sphere is formed 
and therefore the k-space available to the exciton for forming the ground state is reduced 
(Pauli blocking). In order to account for this effect we have changed the exciton envelope 
function in such a way to make it orthogonal to all plane waves inside the Fermi sphere. 
Taking for the Fourier transform of the envelope, the following expression 

where kF is the Fermi momentum, 6 = 1 when k > kp and is zero otherwise, and g is an 
arbitrary function of its argument, we have a normalization independent of kF 

and a kinetic energy (apart from fi2/2p) 
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which is the sum of the term one would get without orthogonalization and the kinetic energy 
k: of two particle sitting on the Fermi sphere. These two properties lead us to choose for 
g(k) the Fourier transform of the envelope (32) l/(y2 +k2)' and write 

m 1 2  z 
dk. 

k I (k - k3'I4 sin(kr) 
(kz - kg+ yz)2 r (45) 

It is immediately apparent that this envelope reduces to (32) for kF = 0. It is also interesting 
to study the asymptotic behaviour of @(r)  

which on one side shows a delocalization of the exciton envelope depending on kp and on 
the other the possibility of still defining the exciton average radius (@lrl@). 

It should be mentioned that by changing the exciton envelope from (32) to (45), a new 
Eulerian differential equation for fn(r) from (33) is obtained so that both the approximation 
(35) and consequently the effective potential (38) should assume a different form. The 
calculation of an effective potential fully consistent with the envelope (45) is technically 
involved so that, at this stage, we have done the following approximation. The Eulerian 
partial differential equation (34) determining &(r) has the term 

which is responsible for the coupling between the exciton envelope @ and the plasmon field. 
With the envelope (32) we have 

which allows an exact solution [13,14] for f s ( r )  from which (35) is derived. With @(r) 
defined in (43, we can approximate (48) with 

and therefore define an effective variational parameter 

which substitutes y in equation (35) and it is such that 7 = y when kp = 0. With this sort 
of mean field approximation we are confident that most of the underlying physics has been 
captured. We shall see that this conclusion is supported by the excellent agreement with 
experimental data. 



Dynamical of exciwm in semiconductor eiectron-hole plme 9345 

6. Numerical results 

In this section we present a number of results obtained from the numerical minimization 
of equation (39) with respect to the parameter y using differ levels of approximation. We 
shall also look at some quantities like the average exciton radius, absorption coefficient in 
an optical transition, average number of plasmon dressing the electron-hole pair, which are 
all useful for the characterization of the exciton. Although our theory is applicable to any 
semi-conductor, all the calculations refer to GaAs at T = 0 K with the plasmon dispersion 
given by equation (3) with the Lindhard static dielectric function (5). With these choices 
for the plasmon dispersion there are not adjustable parameters. 

In figure 4 we show results of the minimization of equation (39) compared with 
experimental data of Fehrenbacb et a1 [25,26]. In this figure we draw simultaneously 
the exciton total energy (which, for the chosen units, tends to -1 at low density) and 
the free particle self-energy. There are three sets of results we wish to comment about, 
considering that the crossings between curves of the same type (full, dashed, dot-dashed) 
define the densities at which the exciton breaks in a free pair. The dot-dashed line is obtained 
assuming that the electron-hole pair can emit and reabsorb plasmons without recoil, that 
is, neglecting A2q2/27ni in equation (39). As we have seen, this corresponds to a static 
approximation. It is immediately seen that thii approximation gives an overestimation of 
both the screening and self-energy. It fails in reproducing the persistence of the exciton 
line. A remarkable improvement is obtained when recoil terms are included (dashed line). 
The overall trend i s  towards a reduction of the screening. Finally, a more than satisfactory 
agreement with the experiment is obtained when Pauli blocking is included (full l i e )  along 
the lines discussed in the previous section. Here the variational parameter is still y and the 
actual values entering the effective potential are given by equation (50). 

04 

" 

13 -13.5 14 14.5 15 15.5 
lag(= cmP) 

I d W" * o  O.I-_--I 

-0.1 

, , o  0.5 1 1.5 
Ya, 

Figure 5. Exciton average radius as a function of 
density. The full line is calculated with the exciton 
envelope given in quation (45) whereas the dashed 
line from equation (32). Material parameters are those 
of CaAs. 

Figure 6. Exciton binding energy as a function of the 
variational parameter y calculated with the envelope 
(32). The three curves correspond to the densities: (a), 
n = 2.43 x lOI5 (rs = 4.0); @), n = 1.24 x lOI5  
(rs = 5.0); (c), n = 7.20 x 1014 (r. = 6 0). Malerial 
parameters are those of GaAs. 

In figure 5 we present the average exciton radius (r) = {@lrl@) as a function of the free 
particles' density. The values of y used in this calculation are those that minimize the total 
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energy. The general trend is an increase of (r) with the density indicating that the effect 
of the screening is, as expected, to make the exciton larger. The orthogonalization of the 
exciton envelope to plane wave (full line) makes the exciton even larger, with (r) - 5 Bohr 
radii near the transition from bound to unbound state. 

In figure 6, the binding energy Eb(y) = E ( y )  - E(0) is shown as a function of the 
variational parameter y for three different densities. This figure shows the existence of 
either one or two minima according to whether or not the exciton forms in a bound state. 
For densities n c 2.4 x 1015 (r, > 4.0), a bound state is formed so that the minimum at 
y # 0 is lower than the one at y = 0. Since y + 0 means a very large separation between 
the particles forming the exciton, in such a density range two free particles are unstable 
against the formation of a bound state. For n > 2.4 x 1OIs (rs c 4.0) the opposite occurs, 
that is, the exciton is unstable versus the formation of a free pair. 

In figure 7 the values of 1@(0)1* as a function of the free particle density are shown, 
again calculated with the values of y which minimize the total energy at a given density. 
It is well hown that this quantity is related to the exciton optical absorption and therefore 
its decreasing with the density of the screening particles is consistent with the experimental 
observation of a vanishing exciton line. There is not a great difference between the envelopes 
(32) and (45). 

13 13.5 14 14.5 15 15.5 
10g(n ”’) 

Figure 7. Modulus squared of @(O) as a function of 
density ncimalized to the value at n = 0.0. The full 
line is calculated from the envelope (45) whereas the 
dashed line is f” (32). 

F i p  S. Average number of dressing plasmaus as a 
fundon of density. The full line is calculated from the 
envelope (45) whereas the dashed line is h m  (32). 

In figure 8 we show the average number of plasmons dressing the exciton as a function of 
density. As one would expect, N does increase with density, particularly near the ionization 
threshold, where N * 3. The fact that N is of the order of some units is consistent with 
our intermediate coupling [20] variational choice of equation (30). 

In figure 9 the dilution parameter defined as n(r)3 is shown against the free particle 
densities. This parameter gives the average number of particles in the volume occupied by 
the exciton and defines the density range within which our single exciton theory is valid. 
It is in fact evident that if the dilution is bigger than one, then there would be a substantial 
overlap between different excitons and therefore the exciton-exciton interaction is no longer 
negligible. It is seen that there is a marked difference between the envelopes (32) and (45) 
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Figure 9. Dilution parameter as a function of density. The average radius is as in figure 9. 

related to the delocalization of the exciton. However, ~ ( r ) ~ ,  in the density range of interest, 
is always less than 1, indicating that the exciton-exciton interaction is negligible. 

7. Conclusion 

In conclusion, we have shown that a theory describing the dynamical screening of an exciton 
embedded in a photogenerated electron4ole gas can be formulated in terms of electron 
(hole) plasmon interaction in a fashion similar to the electron-phonon interaction. We have 
underlined the importance of accounting for the recoils due to the emission and reabsorption 
of plasmons and the presence of a Fermi sphere which reduces the k-space available to the 
exciton wavefunction. A detailed study of the effective electron-hole interaction has shown 
that the screening depends on the average distance between the particles. This distance is 
proportional to y-' where y is a variational parameter calculated, for each density, from 
the minimization of the exciton total energy. At low density the excitonic pair is separated 
hy about one effective Bohr radius (y  -+ U;'), its kinetic energy is bigger than hop, the 
electron-hole gas cannot follow the exciton and therefore the free electron-hole screening 
is not very effective. In contrast, at high densities the average exciton radius increases 
( y  -+ 0). the kinetic energy is lower than Ao, and therefore the free cbarges have t h e  to 
adjust themselves in such a way to make the screening more effecting. In the limit (y  + 0) 
there is no Coulombic tail in the screened effective potential. 

We have analytically shown that assuming the excitonic part very far apart (y  -+ 0). 
neglecting the recoils and assuming a Thomas-Fermi dielectric function for the electron- 
hole gas, the effective interaction reduces to a Yukawa potential with a screening length 
given by the inverse of the Thomas-Fermi momentum. f i s  is the bridge between our 
dynamical theory and previous Hamiltonian approach 17,171. 

A number of quantities such as the average number, N, of plasmon dressing, the exciton 
and the dilution parameter have been calculated to consistently support the approximations 
used. In particular, the behaviour of N with the free particle density justifies the use of an 
intermediate coupling scheme for the system ground state and the low (< 1) value of the 
dilution parameter is consistent with neglecting the exciton-exciton interactions. 
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Finally, the theory has been compared with experimental data relative to GaAs showing 
the ability of this approach of repmducing the persistence of the exciton lime when the 
sample is under strong optical excitation and of giving at the same time the @ansition 
density from bound to unbound states. 
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